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Preface

LISA:

Laser

Interferometer

Space

Antenna

.. ESA-NASA mission
will launch in 2037!

Artist depiction: one of 3 LISA satellites @ esa
in heliocentric orbit, receiving laser light
to measure distance interferometrically ... @

— observing gravitational waves (GWSs)
Credit: AEI/MM/exozet, via NASA

— like telescopes, GWs observatories reshape astronomy
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Outline

This evening'’s talk:

e Who | am

What is a gravitational wave (GW)?
Where LISA fits in (why it matters)
How the future begins today
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Introduction

Who | am — detector characterizer/data analyst — (astro)physicist

(Laser Interferometer == - "
Gravitational-wave
Observatory)

.. PhD: UMich 2014 (Physics)
+ postdocs:

1. AEl Hannover 2015/2017
2. Monash 2018/2019

3. LANL postdoc 2019/2020 GDM at LIGO Hanford Observatory,

. . 2011, procuring optical table extensions
- LANL scientist (Dec 2020-) for quantum-vacuum squeezer

Kip/Rai/Barry’s 2017 Nobel was great, . .. “new era of astronomy”
but ground-based GW science only part of astrophysical spectrum™**
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Introduction

> ‘40000 foot' summary ~ more like ‘orbital’ summary

Telescopes see light from stars + hot matter (EM radiation)

LIGO sees light (w/ interferometer),
— imprints GW signal from black holes (or neutron stars)

LISA like LIGO, but in space & BIGGER,
— bigger, slower GW signals from bigger black holes

LA-UR-22-xxxxx
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What is a Gravitational Wave (GW)?

Definition
Oscillations in the metric of space (> 50 mergers seen to-date)

LIGO Hanford Observatory: GW150914
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What we woke up to one Monday (credit: LIGO Scientific Collaboration)



What is a Gravitational Wave (GW)?

(credit: Simulating Extreme Spacetimes [SXS]) LAUR 20000
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What is a Gravitational Wave (GW)? Spectrum

Sources

wave period

The Gravitational Wave Spectrum

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei

Compact Binaries in our
Galaxy & beyond

Compact objects

captured by Rotating NS,

Supermassive Black Supernovae

Holes <t
e

age of
years hours sec ms

universe

log(frequency) -16 -14 -12 -10 -8 6 -4 2 0 +2

Detectors

Space Terrestrial

—
Cosmic microwave Pulsar Timing
Interferometers  interferometers

background
polarization
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Like light: many M/f windows (credit: NASA Goddard Spaceflight Center) ..



What is a Gravitational Wave (GW)? Spectrum
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What is a Gravitational Wave (GW)? Sources

Transient Persistent

Modeled
Coalescence Continuous «

Unmodeled

Burst Stochastic
Credits: AEI, Penn State (C. Reed), NASA, LIGO (B. Berger)
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What is a Gravitational Wave (GW)? Sources

Phase modulation for long-duration GWs (simplified illustration)

—— unmodulated data

— unmodulated data
+= phase-modulated data

== phase-modulated data

Amplitude [-]

0.4 0.6 0.8 T0

Time [s] Frequency [Hz]

Roemer/Doppler effect from orbit in time & Fourier domains

— HPC/data-science challenge
(sub-field where | worked most: no detection yet, ——
but blinded data challenges prove we have the technology)
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What is a Gravitational Wave (GW)? Sources
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What is a... (GW)? General Relativity

Wave equation from Einstein: perturbation h,, to metric g,

Phase (rad)
Polarization 0 w2 n 3n/2 2n
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conservation allows only (a) & (b) [+ &3]
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What is a... (GW)? Observatories

Infer h(t): measure phase ¢ between times-of-flight T , (laser w),

b=w(Ty - T) =w /0 B X(O) + 1 (Y1) gy

(ETMY)

Input test

Input test End test
mass X

( 5 mass X
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Pre-stabilized (ETMX)

laser (PSL)

.
SR

1064 nm Ant-
20W  Recycling SPIter symmetric §
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Interferometer readout
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Initial LIGO (1997/2010): Michelson interferometer w/ Fabry-Perot arms
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What is a... (GW)? Observatories

Amplitude modulation as Earth rotates (illustration)

Z-axis
o
1

0.5

X-axis

AM: ‘Antenna’ response, h; pol., 0 Hz (credit: M. Rakhmanov)
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What is a... (GW)? Observatories
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Advanced LIGO: Hanford & Livington (credit: S. Larson, Northwestern Ufs%



What is a... (GW)? Observatories
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Overlooking X-arm, LIGO Hanford (credit: C. Gray) 17136



Where LISA fits in

Impressions

¢ Interferometric GW ideas go back to 1960s
Glasgow/Hughes Lab/MIT/Moscow State;
First bar detector late 1950s, Joe Weber [Maryland]

¢ Bigger = (except at high f) better
¢ Biggest: go to SPACE!

LA-UR-22-xxxxx
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Where LISA fits in

JPLs original plan: 5 Gm, launch ~ 2015. Credit: NASA/JPL =~ woneem
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Where LISA fits in

That got cancelled in 2011,... but then ESA stepped in —

selected for L3 misson (2037) in 2017
(following LIGO and LISA Pathfinder)

NASA back onboard

LA-UR-22-xxxxx
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Where LISA fits in

LISA

Laser Interferometer Space Antenna

LA-UR-22-xxxxx

Funded 2017 ESA proposal. Credit: NASA/Simon Barke
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Where LISA fits in

Advanced LIGO | LISA
Arm length 4 km 2.5Gm
Laser power ~ 125 W ~1W
Interferometry Michelson Time-Delay
Resonant Arms Fabry-Perot (none)
Recycling Power+Signal (none)
Squeezing ~3dB (none)
Spectral band ~ 10 —-2000 Hz | ~ 0.1 — 100 mHz

Other than being in space,
LISA is a safe, robust design
(All that extra stuff is low-hanging fruit for the next-gen)

LA-UR-22-xxxxx
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Where LISA fits in

Optical bench in drag-free satellite. Credit: Max Planck/Milde/Exozet***



Where LISA fits in

3 arm-pairs — polarization. Credit: Max Planck/Milde/Exozet  **



Where LISA fits in
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Satellites (triangular formation) in heliocentric orbit. Credit: ESA 25/36



Where LISA fits in

Seem ambituous...

is it technologically ready?
YES
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Where LISA fits in

LISA Pathfinder, launched 2015. (Credit: ESA, C. Carreau)




Where LISA fits in
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Success! Credit: ESA, c.f., Fig 1, Armano et al, PRL 120, 061101 (20182
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How the future begins

|!| SA

CONSORTIUM

An international team is already forming! Credit: LISA Consortium e
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How the future begins: right now
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Simulated dataset w/ signals. Credit: LISA Data Challenge, C. Cavet """
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How the future begins: right now

200
Time [days]

Periodogram of simulated data. Credit: LISA Data Challenge, C. Cavet
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How the future begins: back to the beginning
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Inflation/strings. Credit: Fig. 1, Smith et al, arXiv:astro-ph/0506422v2
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How the future begins: back to the beginning

Ecliptic

12 sats in 3 sets. Credit: Fig. 3, Folkner & Seidel, Space 2005, p. 671}z
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How the future begins: back to the beginning

107 T T T T

—Initial LIGO

---Advanced LIGO

—Einstein Telescope
AURIGA/ALLEGRO/NAUTILUS
LISA

—DECIGO
BBO

—Pulsar Timing Array (Current)

- - -Pulsar Timing Array (SKA)

amplitude spectral density (strain Hz""?}

ID_ZE I—B IJJ I—-l I-Z I':I 2 2 4
10 10 10 1 10 10
Frequency (Hz)
Beyond LIGO/LISA! Credit: Fig. 1, Liv. Rev. Rel. 14 (2011) 5, Pitkin et @bpz
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Conclusion: the future

The un ive I'S€ ... can be studied so many ways

e FElectromagnetic astronomy

(optical, IR, UV, microwave, radio, X/v-ray)
Ground-based GW observatories

bigger & better laser interfeometers above+below,

w/ atom-interferometry a possible breakthough
Pulsar-timing arrays

using radio telescopes to track pulsars on galactic scale
Microwave polarization

seing the imprint of gravity on early cosmic light
LISA and space-based interferometers

what today’s talk was about!

LA-UR-22-xxxxx
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Conclusion

Even this is just the start!

e LISA is the next generation of (GW) astronomy
e GW sources are diverse:
merging black holes, spinning neutron stars, the Big Bang

e NOw is a great time for you too
to get involved — everyone can be a scientist
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